账号:
自动登录
密码:

浏览:614   回复:2

ShanshanWu—2019—车站复杂建筑中的行人运动映射 [复制链接]

  • 571780244
  • 参与勋章

    研究勋章

    互助勋章

楼主  发表于 2021-02-02 10:56  

Pedestrian movement study is one crucial attempt in investigating the mechanism of walking and

walking behaviour. Previous studies have developed two kinds of explorative methodologies. The first

kind is the network-based models. The most famous one is space syntax (Hillier, n.d.), which

constructs the street network based on urban spatial configuration. The methodology was widely

adopted in evaluating the relationship between built environment and pedestrian movement (Foltˆ &

Piombini, 2007; Lerman, Rofè, & Omer, 2014). Similar methods such as GIS network analysis (Ozbil,

2017) and social network analysis (Chen & Chang, 2015) discussed network indicators extensively

(Porta, Crucitti, & Latora, 2006a; Sheikh, Zadeh, & Rajabi, 2013; Zhong et al., 2014). The second

kind is the agent-based simulation model. Those models started from the microscopic behavioural

issues of the individuals, such as speed, direction and visions (Antonini, Bierlaire, & Weber, 2006;

Robin, Antonini, Bierlaire, & Cruz, 2009). Thus, pedestrians’ moving choice were determined by both

destination and physical movement, which is obtained from behavioural experiments (Seyfried,

Steffen, Klingsch, & Maik Boltes, 2005). The attraction of the built environment was important in the

modelling process as well. For example, Wang, Lo, Liu, & Kuang, 2014 modelled the attraction of

different kinds of retail stores in the shopping centres. The result of the simulation fitted the real

situation of the case study area.

行人运动研究是研究步行和步行机理的重要尝试之一走路的行为。以往的研究发展了两种探索性的方法。第一个类是基于网络的模型。最著名的是空间语法(Hilliern.d.),它构建基于城市空间形态的街道网络。该方法被广泛采用用于评价建筑环境与行人运动之间的关系(Foltˆ&Piombini2007年;LermanRofè&Omer2014年)。类似的方法,如GIS网络分析(Ozbil2017)和社会网络分析(Chen&Chang2015)广泛讨论了网络指标(PortaCructtiLatora2006aSheikhZadehRajabi2013Zhong等人,2014)。第二个kind是基于agent的仿真模型。这些模型是从微观行为学出发的个人问题,如速度、方向和视野(安东尼尼、比尔莱和韦伯,2006RobinAntoniniBierlaireCruz2009年)。因此,行人的移动选择是由两者共同决定的目的地和身体运动,从行为实验中获得(SeyfriedSteffenKlingschMaik Boltes2005年)。建筑环境的吸引力在未来是很重要的以及建模过程。例如,WangLoLiuKuang2014模拟了购物中心里有各种各样的零售店。仿真结果与实际相符案例研究区域的情况。



Shan-shan, Wu1 ; Yu, Zhuang2 ; Yun-xi3 , Bai; Yan-ni, Pei4



KEYWORDS

pedestrian movement, station complex building, space syntax, social network analysis

关键词

行人运动,车站综合楼,空间句法,社会网络分析



本文来自于2018北京国际会议12SSS,文件夹‘Architectural Form’,序号143



  • 参与勋章

    研究勋章

    互助勋章

沙发  发表于 2021-02-02 10:59   楼主

ABSTRACT Pedestrian movement in the built environment has attracted research foci from both urban planning  and transportation. Characteristics of built environment, such as urban forms, road network system,  and building layout, can affect people’s movement in different space. Thus, the quality of the space  becomes measurable through evaluating people’s movement for design/planning purpose. Nowadays,  the built environment is becoming more complex, in which the exterior and interior space are  integrated to form a multilevel network. Studying the pedestrian movement in those areas can deepen  the understanding toward the mechanism of people’s route choice, and provide useful insights for  both spatial design and urban planning. The objective of this study is to construct a model which can  map the pedestrian flow in the station complex buildings. The space syntax and SNA (Social network  analysis) methodologies are adopted to investigate people’s movement in the built environment with  integrated exterior and interior space. The station complex buildings of Tuen Mum station, Hong  Kong is selected as case study. The network that connecting the station and surrounding function  areas (within walkable distance) is consists of road system, bridges, and interior passageways. The  indexes that evaluating the network characteristics, such as integration in space syntax and centralities  in SNA will be calculated and compared. The modelling results will be validated by the on-site survey.  The accomplished model can be used as a practical tool in designing complex space at metro station  catchment area.

摘要

建筑环境中的行人运动一直是城市规划界和城市规划界的研究热点还有交通。建成环境的特征,如城市形态、路网系统,而建筑布局,会影响人们在不同空间的运动。因此,空间的质量通过评估设计/规划目的的人员流动而变得可测量。如今,建筑环境越来越复杂,室内外空间越来越复杂形成多级网络。对这些地区行人运动的研究可以深化对人的路径选择机制的认识,为我们提供有益的启示空间设计和城市规划。本研究的目的是建立一个可以绘制车站综合楼内的人流图。空间句法与社会网络分析)方法学被用来研究人们在建筑环境中的运动整合的外部和内部空间。香港屯门车站综合楼本文选取了孔作为研究对象。连接车站与周边功能的网络区域(可步行距离内)由道路系统、桥梁和内部通道组成。这个评价网络特性的指标,如空间句法整合度和中心度将计算和比较SNA中的。模拟结果将通过现场调查进行验证。该模型可作为地铁车站复杂空间设计的实用工具集水区。



  • 参与勋章

    研究勋章

    互助勋章

藤椅  发表于 2021-02-02 11:04   楼主

REFERENCES

Antonini, G., Bierlaire, M., & Weber, M. (2006). Discrete choice models of pedestrian walking

behavior, 40, 667–687. https://doi.org/10.1016/j.trb.2005.09.006

Chen, J., & Chang, Z. (2015). Rethinking urban green space accessibility: evaluating and optimizing

public transportation system through social network analysis in megacities.150–159. https://doi.org/10.1016/j.landurbplan.2015.07.007

Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. (2016). Development of destination

choice models for pedestrian travel.  255–265.

https://doi.org/10.1016/j.tra.2016.09.017

Duncan, D. T., Aldstadt, J., Whalen, J., & Melly, S. J. (2011). Validation of Walk Score ® for

Estimating Neighborhood Walkability : An Analysis of Four US Metropolitan Areas, 4160–

4179. https://doi.org/10.3390/ijerph8114160

Ewing, R., Handy, S., Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable : Urban Design

Qualities Related to Walkability Measuring the Unmeasurable : Urban Design Qualities, 4809.

https://doi.org/10.1080/13574800802451155

Foltˆ, J., & Piombini, A. (2007). Urban layout , landscape features and pedestrian usage, 81, 225–234.

https://doi.org/10.1016/j.landurbplan.2006.12.001

Frank, L. D., Sallis, J. F., Conway, T. L., Chapman, J. E., Saelens, B. E., Bachman, W., … James, E.

(2007). Many Pathways from Land Use to Health,  

https://doi.org/10.1080/01944360608976725

Hillier, B. (n.d.).

Iacono, M., Krizek, K. J., & El-geneidy, A. (2010). Measuring non-motorized accessibility : issues ,

alternatives , and execution. (1), 133–140.

https://doi.org/10.1016/j.jtrangeo.2009.02.002

Jonathan Solomon. (2012).Kong, F., Yin, H., Nakagoshi, N., & Zong, Y. (2010). Landscape and Urban Planning Urban green

space network development for biodiversity conservation : Identification based on graph theory

and gravity modeling, , 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001

Lerman, Y., Rofè, Y., & Omer, I. (2014). Using Space Syntax to Model Pedestrian Movement in

Urban Transportation Planning, 392–410. https://doi.org/10.1111/gean.12063

Liu, S., & Zhu, X. (2004). Accessibility Analyst : an integrated GIS tool for accessibility analysis in

urban transportation planning.(1), 105–

124. https://doi.org/10.1068/b305

Manaugh, K., & El-geneidy, A. (2011). Validating walkability indices : How do different households

respond to the walkability of their neighborhood ?(4), 309–

315. https://doi.org/10.1016/j.trd.2011.01.009

Nassir, N., Hickman, M., Malekzadeh, A., & Irannezhad, E. (2016). A utility-based travel impedance

measure for public transit network accessibility, 26–39.

https://doi.org/10.1016/j.tra.2016.03.007

Ozbil, A. (2017). Modeling street connectivity and pedestrian movement according to standard gis

street network representations 018, (October).

Porta, S., Crucitti, P., & Latora, V. (2006a). The network analysis of urban streets : A dual approach.

 853–866.

https://doi.org/10.1016/j.physa.2005.12.063

Porta, S., Crucitti, P., & Latora, V. (2006b). The Network Analysis of Urban Streets: A Primal

Approach. (5), 705–725.

https://doi.org/10.1068/b32045

Robin, T., Antonini, G., Bierlaire, M., & Cruz, J. (2009). Specification , estimation and validation of a

pedestrian walking behavior model.(1), 36–56.

https://doi.org/10.1016/j.trb.2008.06.010

Ryu, S., Chen, A., & Choi, K. (2017). Solving the combined modal split and traffic assignment

problem with two types of transit impedance function.(3), 870–880. https://doi.org/10.1016/j.ejor.2016.08.019

Seyfried, A., Steffen, B., Klingsch, W., & Maik Boltes. (2005). The fundamental diagram of

pedestrian movement revisited. (10),

P10002. https://doi.org/10.1088/1742-5468/2005/10/P10002

Sheikh, A., Zadeh, M., & Rajabi, M. A. (2013). Analyzing the effect of the street network

configuration on the efficiency of an urban transportation system., 285–297.

https://doi.org/10.1016/j.cities.2012.08.008

Teklenburg, J. A. F., & Timmermans, H. J. P. (1993). Space syntax : standardised integration

measures and, 20(March 1991), 347–357.

Trasberg, T., Cheshire, J., & Longley, P. (2018). Integrating New Measures of Retail Unit

Attractiveness into Spatial Interaction Models, 1–6.

Vieira, A. P. (2012). Scaling relative asymmetry in space syntax analysis, (December).

Wang, W. L., Lo, S. M., Liu, S. B., & Kuang, H. (2014). Microscopic modeling of pedestrian

movement behavior : Interacting with visual attractors in the environment.  21–33. https://doi.org/10.1016/j.trc.2014.03.009

Zhong, C., Arisona, S. M., Huang, X., Batty, M., Schmitt, G., Zhong, C., … Batty, M. (2014).

Detecting the dynamics of urban structure through spatial network analysis. (11), 2178–2199.

https://doi.org/10.1080/13658816.2014.914521

Zhuang, Y., & Yao, Y. (2016). Commercial Space Use and Walking Path in Metro Station Areas of

Shanghai Sub-Center.  85–88,117.


网站指南